Under the help of Turinghonorable person, thisquestion and answer, is being shocking but not dangerouspassed.
在图灵真人的帮助之下,这一场问答,便算是有惊无险的度过去了。kingQi„crossing over” the beforehandage, is far fromGoodall'syearscancompareregarding the research of modernmathematical logic. The lightcannot knowmanywith the turning machineandLambdaalgorithmequalmathematical system. OnkingQiknows, beforekingQimakes the cellular automaton that in the divine land, as well asBeustercorresponds the issue and countermachine, the Markov algorithm and recursive function.
王崎“穿越”之前的年代,对于现代数理逻辑的研究已经远非哥德尔的时代可以相比。光是能够和图灵机、拉姆达算法等价的数学系统都不知道多少。就王崎知道的,包括王崎之前在神州做出来的元胞自动机,以及波斯特对应问题、计数器机、马尔科夫算法、递归函数。On this issue, hisvisioninnateis higher than the divine landpeople.
在这个问题上,他眼光先天就高于神州众人。Buthetalentis not weak, strong assistances of someTuringhonorable people. Six months, naturallycancompletea lot.
而他自身天分也不弱,又有图灵真人的鼎力相助。半年的时间,自然能够完成很多事情。Regarding the generalfree and unfettered, kingQi and preparation of Turinghonorable person, isflawlessandimpregnable.
对于一般的逍遥来说,王崎和图灵真人的准备,就是天衣无缝、无懈可击的。Arrivedlight/onlythinksimpregnably,canmakethemlose the courage.
无懈可击到光是想一想,就能够让他们失去勇气。Finally, FengLuoyibrokekingQi and exchange of Turinghonorable person. Helooks atfourno one, access road/simply said: „Ifno onecontinuesto inquirenow, then, the time of inquirythen arrived here.”
最终,还是冯落衣打断了王崎和图灵真人的交流。他看四下无人,便道:“若是现在没有人继续提问,那么,提问的时间便到这里了。”Turinghonorable personhas not given full expression: „Wait a bit, waits forusto discussthisissue......”
图灵真人意犹未尽:“稍等,等我们将这个问题讨论完……”„Youprivatechattedwell.”FengLuoyisweptcalculates that advocated peaceto calculateMonarcheyes, thenannounced: „Now, wethenwaitmidnight.”
“你们自己私聊就好。”冯落衣扫了算主和算君一眼,然后才宣布道:“现在,我们便坐等子夜罢。”This is nowlawcultivateslawfewart. The summary of say/way of thistype of subversive, must conduct in the midnight.
这便是今法修法为数不多的讲究。这种颠覆性之道的总结,一定要在子夜进行。
The new and oldjunction, yesterdayall sorts ofyesterdaydied, todayall sorts oftodaylives.
新旧之交,昨日之种种昨日死,今日之种种今日生。Thesefree and unfetteredmemberspiritsalsoimmerseshock that in the incompletetheorembrings, startled realizeby the present, the timehas passed byunexpectedlywas so long.
那些逍遥修士精神还沉浸在不完备定理带来的震撼当中,到现在才惊觉,时间居然已经过去了这么久。Noontime, 11 p.m. to 1 a.mtill. Thesesays, has continuedunexpectedlyentirequite a while.
午时起,子时止。这一场讲道,竟已经持续了整整半天。AfterTuringhonorable person discussed that kingQiagainsits the edge in thatrostrum, sat in repose with eyes closed. Obviously was also onlya moment ago the youngmember of thatgold/metalpillperiod. But why does not know, an numerousfree and unfetteredthoughtonunexpectedlyhimas ifhadsuch asYueRuyuan the aura.
和图灵真人讨论完之后,王崎再次坐回那个讲坛的边缘,闭目养神。明明还只是刚才那个金丹期的小修士。但不知为何,一众逍遥竟觉得他身上仿佛有了如岳如渊的气息。Psychological process?
心理作用?Somepeoplehad a suspicion.
有些人产生了一丝怀疑。
A calculationMonarchdepartment that even if not approvekingQi the theory, stillhas toacknowledge,kingQi is actually isverytalented.
就算是不认可王崎理论的算君一系,也不得不承认,王崎却是是很有天分的。No onecandisregardhimagain.
再无人能够无视他。„sideRuxianway. Then the pressureworld......”somepeoplesaidin a low voice: „Ias ifsawanothercommon peoplenational champion.”
“方入仙途。便威压天下……”有人低声道:“我仿佛看到了又一个苍生国手。”„Said that helooks likecalculatesMonarch...... isrepelssay/wayheart of onegeneration of songcourtyardleaders, comes the achievementillustriousprestige......”
“说他像算君才是吧……都是摧破一代歌庭领袖的道心,来成就赫赫威名……”„Shut up!”
“闭嘴!”
Those wordsas ifcaused a tumult. Calculatesmostly the family/homeworrieslooksLord.
那句话似乎引起了一点骚动。大部分算家都担忧的看着算主。In a turbulence, calculating the lord is damageddeepestoneperson. kingQibredto denyhisweaponfromhisthoughtandhismentality. The pursue of hislifetimewas also broken. Now, thissummitwithstand/top the free and unfettered, even ifdiedimmediatelyis not strange.
在一场动荡之中,算主是受创最深的一人。王崎从他的思想、他的思路当中孕育出了否定他的武器。他毕生的追求也被打破。现在,这位巅顶逍遥就算立刻身亡也不奇怪。But. Calculates that Lordas beforemotionless, did not say a word.
可是。算主依旧一动不动,一言不发。
The midnightdingresoundsquickly. Rostrum that kingQisteps on. Thistime, inhislook, brings the unequalledself-confidence.
子夜的钟声很快响起。王崎重新走上的讲坛。这一次,他的神色之中,带着无与伦比的自信。„CalculatesMonarchPang Jia in the past during timeexplains religious doctrine, has talked about the future of arithmetic. Hesaidat that time: ‚Formerlyhas hadthat some demigods of divining according to the diagrams. Theyrepeatedlysaid that whatallissueshave been solved. The remainingmattersjustrub the polish the answeragain,’thenhealsoadded: ‚But, thissadspring/lustinjuresautumnalways dead like a dog...... I to come, todayno onehas also been holdingthisidea.’”
“算君庞家莱在过去的一次讲道之中,谈到过算学的未来。他当时是这么说的:‘从前有过那么一些算卦的半仙。他们反复说什么所有问题都已经解决。剩下的事只不过是再把答案磨磨光而已,’接着他又补充道:‘但是,这种悲春伤秋者总是不得好死……我想来,今天已经没有人还抱着这种想法了。’”„These words of senior, usedinthis timethenreallydo for the occasion. Now, weregarding the progressivefaith, we were so no longer firmtoourimmortalconfidence, theseviewshad been vacillatedby the extremelyfierceattack. To us, likecalculatingMonarchsenior the past and presenthas deduced the futureas ifnot to conform with the reasonweevennot to knowwithout hesitation,weknowanything, wewill knowanything. Weneedto knowanything.”
“前辈的这一句话,用在此时便是真的应景了。现在,我们对于进步的信念,我们对我们仙道的信心不再那么坚定了,这些看法已经被极为剧烈的打击所动摇。对我们来说,像算君前辈那样毫不犹豫地把过去、现在一直推演到未来似乎并不那么合乎情理了我们甚至不知道,我们会知道什么、我们将知道什么。我们又需要知道什么。”kingQithese words, likeraising a curtain of dark age. Hein the destructive power that the elaborationincomplete, cannotbe determined. ten thousandFamenwas attacked is almost unable to recover. Besides the member of somefloors, no one'ssay/wayheartdoes not vacillate.
王崎的这一句话,如同揭开了一个黑暗时代的帷幕。他在阐述不完备、不可判定的破坏力。万法门被打击得几乎一蹶不振。除了一些底层的修士之外,没有人的道心不动摇。Outside, but also is paying attention tothisexplaining religious doctrineten thousandmethoddisciplesstillto weep. Theyscoldedin a low voice: „Exiles the immortal! Daydemon! Demonoutlet!”
场外,还在关注这一场讲道的万法门弟子犹在啜泣。他们低声骂道:“谪仙!天魔!邪魔外道!”FewLi-schoolvariouspeople in field, feelsmoved.
就连场中的少黎派诸人,也觉得怅然若失。„Whenmustaskarithmeticabout the arithmeticfutureview, thencalculates that the family/homemeetingwantsto ask a more fundamentalissuemostly: What kind ofimmortal does the personclanwantto castto saytooneself? For 80,000years the personclanaccumulated, in 2000from now onlawseeking, were ourthinking modesjustappearing briefly in universe? Ifweare worriedto fall the most profounddiscussion, ratherkeepsnowin not thatsturdyhistorical data, wewill also come across the similarissue, buttraded a formto express: Wewere seeingourimmortalthingis strongly old, by the saferevolutionsotherwise? Whetherweshouldabandon the undertaking. At leastabandonsforownheartin the say/wayundertaking, buttransfersmaintains the accomplishments of one's ancestors?”
“假如要去问算学家关于算学的未来的看法时,那么算家多半会想提出更为根本的问题:人族想要给自己铸就如何的仙道?八万年来人族积累、两千年来今法求索,我们的思维方式难道只不过是宇宙中的昙花一现?假如说我们担心陷进玄之又玄的讨论,宁愿留在现在也不那么牢靠的史料中,我们也会遇到同样的问题,只不过换了一种形式来表达:我们是否正在眼看着我们的仙道物壮则老、由泰转否?是否我们应该抛弃创业。至少是抛弃为自己心中之道创业,而转为守成?”Headed by the songcourtyardsendsalsofell intobeing at a losstosectSuanjia.
以歌庭派为首的离宗算家也陷入了迷惘。Hasarrivespoorlyinfinitely, whetheris the barrier of ourcognition?
有穷到无穷,是否就是我们认知的壁垒?
Aren't weableto ascend a height to get a broad viewforever the infiniteother shore?
我们是否永远也无法登临无穷的彼岸?
Isn't thisbarrier, ableto break through?
这个壁垒,是不是无法突破?Onesuch as the worthy people of former timessaid. Doesn't thisuniverse, thenexistinfinitely?
还是一如先贤所言。这个宇宙,便不存在无穷?However, the goal that kingQichoosesthisspeech, does not blow own horn, butexpressedownviewpoint.
但是,王崎选择这一篇讲话的目的,并不是自吹自擂,而是表达自己的观点。
The arithmetic, thenwants the revival!
算学,便要涅槃重生啊!BourbakiSchool. IswhenGoodall, Turingare many new generationtalents of headconquer by killing the entiremathematics circlesthreeviews, Nirvana who stands, walkedfarin the 20 th centurysecond halfpage.
布尔巴基学派。就是在哥德尔、图灵为首的诸多新一代天才血洗整个数学界三观之时,站出来的涅槃者,也是在二十世纪后半页走得最远者。
„ Whycanlike this? Without a doubt, wecame across the majorproblem, veryhugeissue. Perhapsthisdifficult problemexhaustsmylifealsomeansto send the solution. However, at this time, Iwouldremembered the GreekgateLordto say a wordsscientificbranch, so long ascanprovidea lot ofissues, itis full of the vitality/angry, butlacked the issue the trillion of dying. Ithink,weat leastdo not needto be worriedoneselfwitnessed the death of arithmetic. Wecame across a howfearfulissue! „
“为什么会这样呢?毫无疑问,我们遇到了大问题,非常巨大的问题。这个难题或许穷尽吾之一生也办法发解决。但是,这个时候,我总会想起希门主曾经说过的话一门科学分支只要能提供大量的问题,它就充满着生气,而缺乏问题则是将死之兆。我想,我们至少不用担心自己目睹算学的死亡了。我们遇到了一个多么可怕的问题啊!“Somepeoplescoldedin a low voice: „Yousaiddexterously......”
有人低声骂道:“你说得轻巧……”„Right, there is a senior to say that my not and verticalgold/metalpillperiodmemberspoke irresponsibly and sarcastically. However, but! Ourarithmetic, ourten thousand has Famenfeared the crisis?”
“没错,也有前辈想要说我这个未及而立的金丹期修士站着说话不腰疼。但是啊,但是!我们的算学,我们的万法门怕过危机吗?”InkingQi the voice, mixed in an excitingcolor.
王崎的声音之中,混入了一丝激动之色。„Whenmedievalcalculates when the family/homefirst timeenoughdefinestwoquantitiesprecisely the ratios, does not cause the existing problem of commensurabilityquantity, theyas if believe that andrequestsallratiosis the rational numbers, andestablishes the initialschematic diagram of theireometric easoningon the foundation of thistemporarysupposition, butmedievalseveralcertaingreatestprogressarewiththemlinkin this regardat firstwrongly.”
“当中古算家头一次足够精确地定义两个量的比时,就引起不可公度量的存在问题,他们似乎相信并且要求所有的比都是有理数,并且把他们几何推理的最初草图奠定在这个临时假设的基础之上,而中古数家某些最伟大的进展就是同他们在这点上最初的错误联系在一起的。”
The firstmathematicalcrisis, the discovery of irrational number.
第一次数学危机,无理数的发现。„Similarlydiscussedin the clouding overtypewith the opening of infinitesimal calculustime. Peoplealsohope that eachanalytic expressiondefines a clouding overtype, moreovereachclouding overtypehas the derivative;TodayweknowtheserequestsareincompatibleWeitwogentlemen who solvethisproblem, nowsitsamongus!”
“同样在变天式论和无穷小演算时代的开头。人们也希望每一个解析表达式定义一个变天式,而且每个变天式都具有导数;今天我们知道这些要求是互不相容的而解决这个问题的魏二先生,现在就坐在我们中间!”
The secondmathematicalcrisis, calculustoinfinityandinfinitely greatoperation. Causedcontradiction.
第二次数学危机,微积分对无穷大、无穷小的操作。导致的矛盾。„The recentcrisis, is the strangeproofway that because the emergence of simpleset theoryprovidesproduces, itguides the quitegoodresulttous, wecanthink that ithas establishedfinally. Wehave learnedto trace the solesource the entirearithmetic, itcomprised of several severaluserules of symbolsandthesesymbols. Without doubtthisisonenot being able to break throughmountain-protectingbig, althoughweare very difficultto imprisonindoes not suffer the risk that the hungerunderstands. Howeverwe actually can, in the aspectunpredictableandhasin the situation of dangerto decidestepping down.”
“最近一次危机,是由于素朴集合论的出现所提供的诡异的论证方式所产生出来的,它给我们引导出相当不错的结果,以至于我们可以认为它已经最终建立起来。我们已经学会把整个算学追溯到单一的源泉,它由几个符号和这些符号的几条使用规则组成。无疑这是一个攻不破的护山大阵虽然我们很难禁锢在其中而不遭受到饥懂的风险。但是我们却总可以在局面捉摸不定和有外界危险的情况下自行决定退居其中。”
The thirdmathematicalcrisis, set theoryrefers to the contradiction that triggers.
第三次数学危机,集合论的自我指涉引发的矛盾。kingQicloses the eye, herestopped. Then, hestrengthens, saidownidearesolutely: „Only thena small number ofideologicalbackwardpeoplestillmaintainedsuchstandpoint: Arithmeticmustdepend uponhis‚intuition’obtainsnewly‚non-logic before’or‚, logic’inferenceessential factor. Ifcertainarithmeticbranchalsoaxiomizations, isreturns to original statesuchstatementway, allnounsdefinewith the basic concept of set theory, allaxiomsobviouslyexpressedwith the original concept of set theory that did not haveenoughtimeto makeusdo. Naturally, has the possibilitysome day the descendantto request the inferenceway that wedo not permitto introduce the set theoryvery much. Evenhas the possibility , after very muchusesusto use the reasoning model that to discover the seed of contradictionnowtodaywehave not seen, the possibility that although the job descriptionthissituation of modernlogicianpresentsis very lowis very low. By that time, needsto conduct a universalrevision, butwe can still affirm that inevennow the arithmetic the most essentialessential factorwill not be affected.”
王崎闭上眼睛,在这里停顿了一下。然后,他坚定的,毅然决然的说出了自己的想法:“只有少数思想落后的人仍坚持这样的立场:算学家必须依靠他的‘直觉’来得出新的‘非逻辑的’或‘前逻辑的’推理要素。如果某些算学分支还没有公理化,也就是还原成这样的陈述方式,其中所有名词都用集合论的基本概念来定义,所有公理都用集合论的原始概念明显表示出来,那只是还没有足够的时间让我们这么干。当然,很有可能有朝一日我们的后代会要求把我们所不允许的推理方式引进集合论。甚至很有可能以后用我们现在所用的推理模式发现今天我们还没有看出的矛盾的萌芽,虽然近代逻辑学家的工作说明这种情况出现的可能性很小很小。到那时,就需要进行一次普遍的修正,不过即使现在我们也能肯定算学中最本质的要素也不会受到影响。”Onlyhears the first few words, includingcalculatingMonarchallfewLebanesePethrusexcitedlydiscolorations.
只听到第一句话,包括算君在内的所有少黎派修士都勃然色变。kingQithis is then equivalentpoints attheirnosesto scold!
王崎这便是相当于指着他们的鼻子开骂!However, kingQimustsay.
但是,王崎一定要这么说。Thisis the upholstery of hisfollowingthought.
这就是他后续思想的铺垫。„Heleaves a disciple......”, ifon the clearfairy maidenfaceappears the complexexpression, not onlygratifiedhates.
“他到底还是离宗弟子……”若澈仙子脸上浮现出复杂的表情,不只是欣慰还是怨恨。„Inquestion that even ifin23 asked that severalissues were still very remotetous, althoughthey were also not the unreachablegoals, perhapstheycontinuedto giveonegeneration to provide the research subjectincessantly. And the fifthissueaboutLi Qunis an example......”
“即使在二十三问的问题中,仍然有几个问题离我们很遥远,虽说它们还不是不可达到的目标,它们或许继续给不止一代人提供研究课题。其中第五个关于李群的问题就是一个例子……”„Riemann hypothesis, inpeoplegive upprovingafter the clouding over-typemethoditsplan, nowas ifpresents the newlight. Itindicated that itis closely relatedwithsomeclouding over-typesuspicion, as the matter standsmakesthesetwoissuessamearithmetic- the twoaspects of algebraissue. Buttothisissue, regardingassigning the number fieldstudiesallminute/share of circlesto expandsimultaneouslyis playing the decisiverolewithout doubt......”
“黎曼猜想,在人们放弃用变天式的方法证明它的打算之后,现在似乎出现了新光明。它表明它与某个变天式的猜想密切相关,这样一来使得这两个问题成为同一算术-代数问题的两个方面。而对这个问题,对于给定数域同时研究其所有分圆扩张无疑起着决定性的作用……”„...... CalculateskingGaosi the arithmeticstronglyintworeciprocity lawssurroundings;Nowweknow,tworeciprocity laws are just ‚a kind of territory’ the firstexceptional case of variouslaw, buttheselawsare the theorems to decideAshi of algebranumber fieldexpanding, wealsoknow how to indicatetheselawsto makethemseem like a compactwhole......”
“……算王高嗣的算术集中在二次互反律的周围;现在我们知道,二次互反律只不过是‘类域’诸定律的头一个特例,而这些定律是决定代数数域的阿氏扩张的定理,我们也知道怎样表述这些定律使得它们看起来是一个紧凑的整体……”Issueswere proposed. Manycalculate that the family/homeis not silly. Theyare willingto realizequickly,thisis a matureideology.
一个个问题被提出。诸多算家都不傻。他们肯快意识到,这是一个成熟的思想体系。Alsoincludingto these logicandformalization of sect. Alsothere iseven/includingsect the lower-dimensional topologyand an algebraic topology of representative. Indistinct, someinitsabovething.
既包括离宗的那些逻辑、形式化。也有连宗的代表的低维拓扑、代数拓扑。隐约之间,还有一些更在其之上的东西。Whatoutsidelookis earnest.
何外尔的眼神热切起来。„ThiskingQi, asked was really the Nirvana of arithmetic!”( To be continued.) The mobile phone userpleasevisithttp://m.piaotian.net
“这个王崎,求的果然是算学的涅槃!”(未完待续。)手机用户请访问http://m.piaotian.net
To display comments and comment, click at the button
Comments for Chapter #244: The Nirvana of arithmetic